Воскресенье, 19.05.2024, 03:09
ШКОЛА И НЕЙРОКОМПЬЮТЕР
Приветствую Вас Гость | RSS
Главная Блог Регистрация Вход
Меню сайта

МГУ Нейрокомпьтер

Япония Создание ИИ

Наш опрос
Оцените мой сайт
Всего ответов: 31

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Форма входа

Главная » 2010 » Ноябрь » 5 » Доклад Патраева Глеба "Обучение нейрокомпьютеров"
14:56
Доклад Патраева Глеба "Обучение нейрокомпьютеров"
Прошло уже много лет с того момента, когда появилась первая ЭВМ. За это время сменилось уже несколько поколений вычислительных машин. Менялись элементная база, конструктивные решения, языки программирования, программ¬ное обеспечение, но основы архитектуры, заложенные при создании машин первого поколения, практически без изменения перешли на машины последующих и успешно работают до настоящего времени. Нет сомнений, что идеи машин первого поколения ещё послужат человеку. Однако всё настоятельнее требуются системы, наделённые элементами интеллекта при обработке колоссального объёма информации и в то же время работающие в темпе управляемых процессов. 
В таких прикладных областях деятельности человека, как космология, молекулярная биология, гидрология, охрана окружающей среды, медицина, экономика и многих других, сформулированы проблемы, решение которых потребует вычислительных машин, обладающих колоссальными ресурсами.
На сегодняшний день высокие технические характеристики реализуется только с помощью дорогостоящих уникальных архитектур от CRAY, SGI, Fujitsu, Hitachi с несколькими тысячами процессоров.
В настоящее время концептуально разработаны методы достижения высокого быстродействия, которые охватывают все уровни проектирования вычислительных систем. На самом нижнем уровне – это передовая технология конструирования и изготовления быстродействующей элементной базы и плат с высокой плотностью монтажа.
Теоретически совершенствование элементной базы – самый простой метод повышения производительности вычислительных систем. Однако на практике он приводит к существенному удорожанию новых разработок. Следовательно, требуется разработка новых принципов вычислений, позволяющих ставить и решать задачи подобного типа, а также способных значительно повысить скорость обработки традиционных вычислительных алгоритмов. К числу новых направлений можно отнести и нейрокомпьютеры.
II.Нейрокомпьютеры
Что такое нейрокомпьютер
Нейрокомпьютеры – это системы, в которых алгоритм решения задачи представлен логической сетью элементов частного вида – нейронов с полным отказом от булевских элементов типа И, ИЛИ, НЕ. Как следствие этого введены специфические связи между элементами, которые являются предметом отдельного рассмотрения. В отличие от классических методов решения задач нейрокомпьютеры реализуют алгоритмы решения задач, представленные в виде нейронных сетей. Это ограничение позволяет разрабатывать алгоритмы, потенциально более параллельные, чем любая другая их физическая реализация.
Преимущества нейрокомпьютеров.
По сравнению с обычными компьютерами нейрокомпьютеры обладают рядом преимуществ.
Во первых — высокое быстродействие, связанное с тем, что алгоритмы нейроинформатики обладают высокой степенью параллельности.
Во вторых — нейросистемы делаются очень устойчивыми к помехам и разрушениям.
В третьих — устойчивые и надежные нейросистемы могут создаваться из ненадежных элементов, имеющих значительный разброс параметров.
Недостатки нейрокомпьютеров.
Несмотря на перечисленные выше преимущества эти устройства имеют ряд недостатков:
1. Они создаются специально для решения конкретных задач, связанных с нелинейной логикой и теорией самоорганизации. Решение таких задач на обычных компьютерах возможно только численными методами.
2. В силу своей уникальности эти устройства достаточно дорогостоящи.

Обучение искусственных нейронных сетей

Способность к обучению является фундаментальным свойством мозга. В контексте ИНС процесс обучения может рассматриваться как настройка архитектуры сети и весов связей для эффективного выполнения специальной задачи. Обычно нейронная сеть должна настроить веса связей по имеющейся обучающей выборке. Функционирование сети улучшается по мере итеративной настройки весовых коэффициентов. Свойство сети обучаться на примерах делает их более привлекательными по сравнению с системами, которые следуют определенной системе правил функционирования, сформулированной экспертами.
Для конструирования процесса обучения, прежде всего, необходимо иметь модель внешней среды, в которой функционирует нейронная сеть - знать доступную для сети информацию. Эта модель определяет парадигму обучения. Во-вторых, необходимо понять, как модифицировать весовые параметры сети - какие правила обучения управляют процессом настройки. Алгоритм обучения означает процедуру, в которой используются правила обучения для настройки весов.
Существуют три парадигмы обучения: "с учителем", "без учителя" (самообучение) и смешанная. В первом случае нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам. Усиленный вариант обучения с учителем предполагает, что известна только критическая оценка правильности выхода нейронной сети, но не сами правильные значения выхода.
Примером обучения системы с учителем может быть разработка проводимая разработчиками «Вконтакте».Речь идёт о антиспамовой системе искусственного интеллекта, который анализирует входящие личные сообщения и определяет вероятность того,что они содержат спам.
По словам основателя «Вконтакте», «система обучается сама в режиме реального времени на основании жалоб пользователей через кнопку «Это спам». В результате создаются общие фильтры для всего сайта и личные фильтры для каждого пользователя (см.рисунок).
Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или корреляции между образцами в системе данных, что позволяет распределить образцы по категориям. При смешанном обучении часть весов определяется посредством обучения с учителем, в то время как остальная получается с помощью самообучения.
Теория обучения рассматривает три фундаментальных свойства, связанных с обучением по примерам: емкость, сложность образцов и вычислительная сложность. Под емкостью понимается, сколько образцов может запомнить сеть, и какие функции и границы принятия решений могут быть на ней сформированы. Сложность образцов определяет число обучающих примеров, необходимых для достижения способности сети к обобщению. Слишком малое число примеров может вызвать "переобученность" сети, когда она хорошо функционирует на примерах обучающей выборки, но плохо - на тестовых примерах, подчиненных тому же статистическому распределению. Известны 4 основных типа правил обучения: коррекция по ошибке, машина Больцмана, правило Хебба и обучение методом соревнования.

Правило коррекции по ошибке.
При обучении с учителем для каждого входного примера задан желаемый выход d. Реальный выход сети y может не совпадать с желаемым. Принцип коррекции по ошибке при обучении состоит в использовании сигнала (d-y) для модификации весов, обеспечивающей постепенное уменьшение ошибки. Обучение имеет место только в случае, когда перцептрон ошибается. Известны различные модификации этого алгоритма обучения.
Обучение Больцмана.
Представляет собой стохастическое правило обучения, которое следует из информационных теоретических и термодинамических принципов. Целью обучения Больцмана является такая настройка весовых коэффициентов, при которой состояния видимых нейронов удовлетворяют желаемому распределению вероятностей. Обучение Больцмана может рассматриваться как специальный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах .

Правило Хебба.
Самым старым обучающим правилом является постулат обучения Хебба. Хебб опирался на следующие нейрофизиологические наблюдения: если нейроны с обеих сторон синапса активизируются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью этого правила является то, что изменение синаптического веса зависит только от активности нейронов, которые связаны данным синапсом. Это существенно упрощает цепи обучения в реализации VLSI.

Обучение методом соревнования.
В отличие от обучения Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, при соревновательном обучении выходные нейроны соревнуются между собой за активизацию. Это явление известно как правило "победитель берет все". Подобное обучение имеет место в биологических нейронных сетях. Обучение посредством соревнования позволяет кластеризовать входные данные: подобные примеры группируются сетью в соответствии с корреляциями и представляются одним элементом. При обучении модифицируются только веса "победившего" нейрона. Эффект этого правила достигается за счет такого изменения сохраненного в сети образца (вектора весов связей победившего нейрона), при котором он становится чуть ближе ко входному примеру.
Практическое применение нейрокомпьютеров.
Несмотря на недостатки, нейрокомпьютеры могут быть успешно использованы в различных областях народного хозяйства.
— Управление в режиме реального времени: самолетами, ракетами и технологическими процессами непрерывного производства (металлургического, химического и др.);
— Распознавание образов: человеческих лиц, букв и иероглифов, сигналов радара и сонара, отпечатков пальцев в криминалистике, заболеваний по симптомам (в медицине) и местностей, где следует искать полезные ископаемые (в геологии, по косвенным признакам);
— Прогнозы: погоды, курса акций (и других финансовых показателей), исхода лечения, политических событий (в частности результатов выборов), поведения противников в военном конфликте и в экономической конкуренции;
— Оптимизация и поиск наилучших вариантов: при конструировании технических устройств, выборе экономической стратегии и при лечении больного.
Этот список можно продолжать, но и сказанного достаточно для того, чтобы понять, что нейрокомпьютеры могут занять достойное место в современном обществе.
Что же представляет из себя нейрокомпьютер? Нейрокомпьютеры бывают двух типов:
1. Большие универсальные компьютеры построенные на множестве нейрочипов.
 2. Нейроимитаторы, представляющие собой программы для обычных компьютеров, имитирующие работу нейронов. В основе такой программы заложен алгоритм работы нейрочипа с определенными внутренними связями. Что — то типа "Чёрного ящика”, по принципу которого он и работает. На вход такой программы подаются исходные данные и на основании закономерностей, связанных с принципом работы головного мозга, делаются выводы о правомерности полученных результатов. 
III. Основы нейроинформатики
Нейронные сети это всего-навсего сети, состоящие из связанных между собой простых элементов формальных нейронов. Большая часть работ по нейроинформатике посвящена переносу различных алгоритмов решения задач на такие сети.
В основу концепции положена идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для передачи сигнала. Коротко эту мысль можно выразить так: "структура связей все, свойства элементов ничто”.
Совокупность идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (connection связь). С реальным мозгом все это соотносится примерно так же, как карикатура или шарж со своим прототипом. Важно не буквальное соответствие оригиналу, а продуктивность технической идеи.
С коннекционизмом тесно связан следующий блок идей:
однородность системы (элементы одинаковы и чрезвычайно просты, все определяется структурой связей);
надежные системы из ненадежных элементов и "аналоговый ренессанс” использование простых аналоговых элементов;
"голографические” системы при разрушении случайно выбранной части система сохраняет свои свойства.
Предполагается, что широкие возможности систем связей компенсируют бедность выбора элементов, их ненадежность и возможные разрушения части связей.
 Для описания алгоритмов и устройств в нейроинформатике выработана специальная "схемотехника”, в которой элементарные устройства (сумматоры, синапсы, нейроны и т.п.) объединяются в сети, предназначенные для решения задач. Для многих начинающих кажется неожиданным, что ни в аппаратной реализации нейронных сетей, ни в профессиональном программном обеспечении эти элементы вовсе не обязательно реализуются как отдельные части или блоки. Используемая в нейроинформатике идеальная схемотехника представляет собой особый язык описания нейронных сетей и их обучения. При программной и аппаратной реализации выполненные на этом языке описания переводятся на более подходящие языки другого уровня. 
Самый важный элемент нейросистем адаптивный сумматор, который вычисляет скалярное произведение вектора входного сигнала x на вектор параметров a. Адаптивным он называется из-за наличия вектора настраиваемых параметров a.
Нелинейный преобразователь сигнала получает скалярный входной сигнал x и переводит его в заданную нелинейную функцию f(x).
Точка ветвления служит для рассылки одного сигнала по нескольким адресам. Она получает скалярный входной сигнал x и передает его на все свои выходы.
Стандартный формальный нейрон состоит из входного сумматора, нелинейного преобразователя и точки ветвления на выходе.
Линейная связь синапс отдельно от сумматоров не встречается, однако для некоторых рассуждений бывает удобно выделить этот элемент. Он умножает входной сигнал x на "вес синапса” a.
Итак, мы коротко описали основные элементы, из которых состоят нейронные сети.
IV.Задачи для нейронных сетей
Многие задачи, для решения которых используются нейронные сети, могут рассматриваться как частные случаи следующих основных проблем:
построение функции по конечному набору значений;
оптимизация;
построение отношений на множестве объектов;
распределенный поиск информации и ассоциативная память;
фильтрация;
сжатие информации;
идентификация динамических систем и управление ими;
нейросетевая реализация классических задач и алгоритмов вычислительной математики: решение систем линейных уравнений, решение задач математической физики сеточными методами и др.
V.Заключение
Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки.
Такие системы основывались на высокоуровневом моделировании процесса мышления на обычных компьютерах. Скоро стало ясно, чтобы создать искусственный интеллект, необходимо построить систему с похожей на естественную архитектурой, т. е. перейти от программной реализации процесса мышления к аппаратной.
Естественным продолжением аппаратного и программного подхода к реализации нейрокомпьютера является программно-аппаратный подход.
Аппаратный подход связан с созданием нейрокомпьютеров в виде нейроподобных структур (нейросетей) электронно-аналогового, оптоэлектронного и оптического типов. Для таких компьютеров разрабатываются специальные СБИС (нейрочипы).
Основу нейросетей составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга – искусственные нейроны. Нейрон обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Каждый синапс характеризуется величиной синаптической связи или ее весом, который по физическому смыслу эквивалентен электрической проводимости в электрических связях.
Для решения отдельных типов задач существуют оптимальные конфигурации нейронных сетей. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом слоев нейронов. Одной из важных особенностью нейронной сети является возможность к обучению. Обучение нейросети может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы нейросети формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы. После обучения на достаточно большом количестве примеров можно использовать обученную сеть для прогнозирования, предъявляя ей новые входные значения. Это важнейшее достоинство нейрокомпьютера, позволяющие ему решать интеллектуальные задачи, накапливая опыт.

Просмотров: 554 | Добавил: Shurka | Рейтинг: 5.0/1
Всего комментариев: 0
Имя *:
Email *:
Код *:
Поиск

Календарь
«  Ноябрь 2010  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930

Архив записей

... Сделать бесплатный сайт с uCoz